Continental Supports Hyperloop Technology as a Logistics Solution of the Future

Continental Supports Hyperloop Technology as a Logistics Solution of the Future

Low aerodynamic resistance ensures extreme speeds

The Hyperloop system would allow for the transport of people and goods at speeds of more than 1,000 km/h – similar to those achieved by aircraft. The advantage over air transport is that the Hyperloop is much more environmentally friendly and could be used like a subway. The technological concept is based on the principle of reducing the usual resistance of regular trains in tunnel-like tubes so that the vehicles can achieve much higher speeds. Aerodynamic resistance in particular is reduced to almost zero. The air pressure in the tubes corresponds to only one percent of the usual atmospheric air pressure. In addition, the Hyperloop comes without wheels, which means that they are not there to cause friction. Instead, the capsule-shaped vehicles use magnetic levitation technology or air cushions to move.

Real Hyperloop projects conceivable in the near future

If the Hyperloop technology proves itself there and real projects are implemented, companies will benefit from goods being transported much more quickly than they are on current rail vehicles or trucks. Due to its low resistance, the Hyperloop requires only a fraction of the energy and is therefore an equally cost-effective and sustainable solution. The system also takes some of the strain off the road and rail network. In the long term, the Hyperloop may also be used in passenger transport.

Continental drive belt meets Hyperloop requirements

Continental recognized the potential of the technology at an early stage and is working together with talented young people in development work. One example is its current project with students from the Emden/Leer University of Applied Sciences and the University of Oldenburg. Under the leadership of Professors Walter Neu and Thomas Schüning, they have spent the last nine months thinking about how to reach the necessary high speeds safely and reliably. Their specific task for the SpaceX competition was to develop a Hyperloop prototype with a drive system that can achieve high acceleration in a vacuum, can brake and has its own power supply. The students met this challenge with an electric motor with an output of 170 kilowatts. This takes the 250 kg prototype to a top speed of up to 500 km/h. “We needed high torque and a very powerful belt for our drive system. Continental first advised us and finally provided us with the appropriate special belt, which can reliably handle the high acceleration forces in the Hyperloop and its use in a vacuum thanks to its material properties,” said Neu of the requirements.

Alexander Behmann, application engineer at Continental, added, “With its design of carbon cord and polyurethane, the belt is extremely energy-efficient as well as very narrow and therefore extremely lightweight. It is also very reliable without maintenance. And these aspects – power, reliability and low weight – are precisely what a HyperPod needs. We were thus able to offer the students a suitable solution.” The belt has already successfully passed its first test. The runs on the SpaceX test track in Los Angeles went well and the team of mechanical and electrical engineering students from the Emden/Leer University of Applied Sciences placed in the top ten of the competition.

Source of information

Continental AG & Profibusiness.world

Date

September 17, 2018

Gallery

ProfiBusiness.world


           
   

Facebook

Page generated in 2.2781 seconds.
Redakční systém teal.cz naprogramoval Vítězslav Dostál